Production of Curcumin-Loaded Silk Fibroin Nanoparticles for Cancer Therapy
نویسندگان
چکیده
Curcumin, extracted from the rhizome of Curcuma longa, has been widely used in medicine for centuries due to its anti-inflammatory, anti-cancer, anti-oxidant and anti-microbial effects. However, its bioavailability during treatments is poor because of its low solubility in water, slow dissolution rate and rapid intestinal metabolism. For these reasons, improving the therapeutic efficiency of curcumin using nanocarriers (e.g., biopolymer nanoparticles) has been a research focus, to foster delivery of the curcumin inside cells due to their small size and large surface area. Silk fibroin from the Bombyx mori silkworm is a biopolymer characterized by its biocompatibility, biodegradability, amphiphilic chemistry, and excellent mechanical properties in various material formats. These features make silk fibroin nanoparticles useful vehicles for delivering therapeutic drugs, such as curcumin. Curcumin-loaded silk fibroin nanoparticles were synthesized using two procedures (physical adsorption and coprecipitation) more scalable than methods previously described using ionic liquids. The results showed that nanoparticle formulations were 155 to 170 nm in diameter with a zeta potential of approximately -45 mV. The curcumin-loaded silk fibroin nanoparticles obtained by both processing methods were cytotoxic to carcinogenic cells, while not decreasing viability of healthy cells. In the case of tumor cells, curcumin-loaded silk fibroin nanoparticles presented higher efficacy in cytotoxicity against neuroblastoma cells than hepatocarcinoma cells. In conclusion, curcumin-loaded silk fibroin nanoparticles constitute a biodegradable and biocompatible delivery system with the potential to treat tumors by local, long-term sustained drug delivery.
منابع مشابه
Self-assembled silk fibroin nanoparticles loaded with binary drugs in the treatment of breast carcinoma
Self-assembled nanoparticles of the natural polymer, silk fibroin (SF), are a very promising candidate in drug delivery due to their biocompatible and biodegradable properties. In this study, SF nanoparticles loaded with 5-fluorouracil (5-FU) and curcumin with size 217±0.4 nm and with a loading efficacy of 45% and 15% for 5-FU and curcumin, respectively, were prepared. The in vitro release effe...
متن کاملSupercritical carbon dioxide-developed silk fibroin nanoplatform for smart colon cancer therapy
Purpose To deliver insoluble natural compounds into colon cancer cells in a controlled fashion. Materials and methods Curcumin (CM)-silk fibroin (SF) nanoparticles (NPs) were prepared by solution-enhanced dispersion by supercritical CO2 (SEDS) (20 MPa pressure, 1:2 CM:SF ratio, 1% concentration), and their physicochemical properties, intracellular uptake efficiency, in vitro anticancer effect...
متن کاملFabrication of Silk Scaffold Containing Simvastatin-Loaded Silk Fibroin Nanoparticles for Regenerating Bone Defects
Background: In the present study, a tissue engineered silk fibroin (SF) scaffold containing simvastatin-loaded silk fibroin nanoparticles (SFNPs) were used to stimulate the regeneration of the defected bone. Methods: At first, the porous SF scaffold was prepared using freeze-drying. Then simvastatin-loaded SFNPs were made by dissolvation method and embedded in the SF scaffold. Afterwards, the ...
متن کاملFabrication and characterization of silk fibroin-derived curcumin nanoparticles for cancer therapy
Biologically derived nanoparticles (<100 nm) were fabricated for local and sustained therapeutic curcumin delivery to cancer cells. Silk fibroin (SF) and chitosan (CS) polymers were blended noncovalently to encapsulate curcumin in various proportions of SF and CS (75:25, 50:50, and 25:75 SF:CS) or pure SF at two concentrations (0.1% w/v and 10% w/v) using the devised capillary-microdot techniqu...
متن کاملEvaluating the Toxicity of Doxorubicin-Silk Fibroin Nanoparticles and Its Effect on P53 Gene Expression in Breast Cancer Cell Line
Introduction: The use of drug delivery systems can increase the effectiveness of chemotherapy and reduce its side effects in the treatment of breast cancer. This study aimed to evaluate the effect of doxorubicin-containing silk fibroin nanoparticles (NF-DOX) on P53 gene expression in breast cancer cell lines and to measure its toxicity in vitro. Methods: NF-DOX was synthesized and characterize...
متن کامل